Skip to contents

Model fit indices extracted from k-folds

Usage

k_model_fit(models, index = "default", by.fold = TRUE)

Arguments

models

an object returned from kfa

index

character; one or more fit indices to summarize in the report. Use index_available to see choices. Chi-square value and degrees of freedom are always reported. Default is CFI and RMSEA (naive, scaled, or robust version depends on estimator used in models).

by.fold

Should each element in the returned lists be a fold (default) or a factor model?

Value

list of data.frames with average model fit for each factor model

Examples

data(example.kfa)

# customize fit indices to report
k_model_fit(example.kfa, index = c("chisq", "cfi", "rmsea", "srmr"))
#> [[1]]
#>      model    chisq  df       cfi     rmsea       srmr
#> 1 1-factor 1842.728 170 0.3982157 0.1477066 0.15871353
#> 2 2-factor 1179.387 169 0.6365010 0.1151363 0.13286334
#> 3 3-factor  154.693 167 1.0000000 0.0000000 0.02918932
#> 
#> [[2]]
#>      model     chisq  df       cfi      rmsea       srmr
#> 1 1-factor 1635.0572 170 0.4142103 0.13854143 0.15298996
#> 2 3-factor  184.2802 167 0.9930907 0.01518072 0.03465284
#> 

# organize results by factor model rather than by fold
k_model_fit(example.kfa, by.fold = FALSE)
#> $`1-factor`
#>   fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 1    1     489.3249  46.35648 0.07403330    0.1455603
#> 4    2     530.2678  56.27182 0.09795945    0.1369679
#> 
#> $`2-factor`
#>   fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 2    1      401.284  58.37055  0.2831848    0.1141319
#> 
#> $`3-factor`
#>   fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 3    1     103.0409  110.7621  1.0000000   0.00000000
#> 5    2     118.7127  108.3270  0.9802355   0.01461252
#>