Model fit indices extracted from k-folds
Arguments
- models
an object returned from
kfa- index
character; one or more fit indices to summarize in the report. Use
index_availableto see choices. Chi-square value and degrees of freedom are always reported. Default is CFI and RMSEA (naive, scaled, or robust version depends on estimator used inmodels).- by.fold
Should each element in the returned lists be a fold (default) or a factor model?
Examples
data(example.kfa)
# customize fit indices to report
k_model_fit(example.kfa, index = c("chisq", "cfi", "rmsea", "srmr"))
#> [[1]]
#> model chisq df cfi rmsea srmr
#> 1 1-factor 1842.728 170 0.3982157 0.1477066 0.15871353
#> 2 2-factor 1179.387 169 0.6365010 0.1151363 0.13286334
#> 3 3-factor 154.693 167 1.0000000 0.0000000 0.02918932
#>
#> [[2]]
#> model chisq df cfi rmsea srmr
#> 1 1-factor 1635.0572 170 0.4142103 0.13854143 0.15298996
#> 2 3-factor 184.2802 167 0.9930907 0.01518072 0.03465284
#>
# organize results by factor model rather than by fold
k_model_fit(example.kfa, by.fold = FALSE)
#> $`1-factor`
#> fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 1 1 489.3249 46.35648 0.07403330 0.1455603
#> 4 2 530.2678 56.27182 0.09795945 0.1369679
#>
#> $`2-factor`
#> fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 2 1 401.284 58.37055 0.2831848 0.1141319
#>
#> $`3-factor`
#> fold chisq.scaled df.scaled cfi.scaled rmsea.scaled
#> 3 1 103.0409 110.7621 1.0000000 0.00000000
#> 5 2 118.7127 108.3270 0.9802355 0.01461252
#>